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Models of Generalizability Theory
in Analyzing Existing Faculty

Evaluation Data

Lei Chang
Department of Educational Psychology

Chinese University of Hong Kong

Dennis Hocevar
Department of Educational Psychology

University of Southern California

In this article, we demonstrate the use of generalizability theory in analyzing existing
faculty evaluation data. Three measurement conceptualizations representing differ-
ent purposes of faculty evaluation were conceived to account for the existing data
structure. Variance components associated with these conceptualizations were esti-
mated from random samples taken from an existing faculty evaluation conducted in a
university in the western United States. Within each of the 3 conceptualizations, 3 de-
cision study considerations are presented together with the generalizability coeffi-
cient estimates. Practical implications for faculty evaluations are discussed.

The purpose of this article is to present three models of generalizability (G) theory
in analyzing existing faculty evaluation data. These models of G theory are pre-
sented as modules to be readily applied to existing faculty evaluation, which, in
most universities, is regularly conducted but not necessarily as a G study. G theory
has been extensively dealt with by Brennan (1983, 1992) and Shavelson and Webb
(1988, 1991), in addition to its more comprehensive treatment by Cronbach,
Gleser, Nanda, and Rajaratnam (1972). The cognitive framework, notations, and
symbolism of G theory used in this article are adopted from Brennan. Four previous
studies (Gillmore, Kane, & Naccarato, 1978; Kane & Brennan, 1977; Kane,
Gillmore, & Crooks, 1976; Smith, 1979) that applied G theory to faculty evaluation
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have also laid the foundations for much of the work presented here. The remainder
of the article is organized according to the distinction in G theory between
generalizability and decision (D) studies. In the G study, we present three conceptu-
alizations of faculty evaluation as well as estimated variance components associ-
ated with these conceptualizations. In the D-study section, different decision con-
siderations regarding each of the G-study conceptualizations are discussed. G
coefficients associated with these D-study considerations are also provided.

G STUDY

The first task in a G study is to conceptualize the measurement under consideration
by defining the objects of measurement and the conditions that are acceptable to the
researcher as ways to take observations of the objects of measurement. The set of
these conditions constitutes the universe of admissible observations. The same
framework applies to existing faculty evaluation except that the measurement con-
ceptualization has to be reformulated to account for the existing data structure. That
is, to use the existing faculty evaluation, a researcher has to accept all or some of the
measurement conditions by which the evaluation has been obtained. These condi-
tions are discussed in the following section.

Measurement Conditions of Existing Faculty Evaluation

In a typical faculty evaluation, a faculty member is evaluated for the courses she or
he has taught by the students enrolled in these courses using a standard set of evalu-
ation items. The same evaluation procedure using the same set of items is usually
repeated over semesters. As a result, there are multiple evaluations of a teacher
teaching the same or different courses over time. There are also multiple evalua-
tions of a particular course taught by the same or different teachers over time. Thus,
there are five levels by which the evaluation data can be categorized. They are the
teachers (t), courses (c), students (s), items (i), and occasions (o). For a given evalu-
ation, different students are usually enrolled in different courses taught by different
teachers. Thus, students are nested within teachers and within courses. For some
data where different teachers teach the same courses, teachers are nested in courses.
If the courses are repeated over the years, they are crossed with the occasions,
whereas teachers are nested within occasions because different rather than the same
teachers teach the courses over the semesters. Students who are nested in teachers
are also nested in occasions.

In other data, when a teacher teaches different courses, courses are nested in
teachers. Because the same teachers teach different courses over the semesters, the
teachers are crossed with and courses are nested in occasions. In such data, stu-
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dents who are nested in courses are nested in occasions. That is, students generally
do not repeat the same courses over the semesters. In both data situations, items are
crossed with the rest of the data conditions because the same set of items is usually
used by students in evaluating teachers and courses over semesters.

Finally, a teacher teaching a course or a course taught by a teacher may be
viewed as an undifferentiated instructional event, which represents a third data sit-
uation. Thus, three measurement conceptualizations can be formulated to account
for the previously described faculty evaluation data that commonly exist. These
measurement conceptualizations are discussed next.

Teachers As Objects of Measurement

One conceptualization would have teachers as the objects of measurement. This
conceptualization fits the traditional notion of faculty evaluation as is implied by its
name. The purpose of such an evaluation is related to promotion and tenure deci-
sions. One is concerned with the dependability1 of the evaluation over future
courses and students that a faculty member might teach and over future evaluations
using, possibly, different items. With teachers as the objects of measurement, the
rest of the data categorizations represent conditions under which the faculty evalua-
tion has been obtained. In G-theory terminology, a set of similar conditions is called
afacet. Thus, there are four facets—those of students, courses, items, and occasions
—that constitute the universe of admissible observations.

The relations among the evaluation conditions and the objects of measurement
are restricted by the existing data structure. For each teacher from a population of
teachers, a usual faculty evaluation represents sampling one condition from each
of the four facets in the universe of admissible observations. An observed evalua-
tion score of a teacher is a combination of the four sampled conditions. This con-
ceptualization of the faculty evaluation can be summarized in a G-study design of
the following form: (s:c):(t × o) × i, where an observation,Xsi:c:to, can be decom-
posed into 11 score effects and the grand mean. These score effects are presented
in Table 1.

InTable1, thegrandmean,µ, is theexpectedvalueoverall teachers in thepopula-
tionof teachersandall themeasurementconditions in theuniverseofadmissibleob-
servations. The number of teachers in the population and the numbers of conditions
in the universe of admissible observations may be considered infinite. The score ef-
fectsaredefined in termsofmeanscores.Forexample, the itemscoreeffect is (µi –µ)
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TABLE 1
Score Effects and Variance Estimates of the Generalizability Study Designs

(s:c):(t × o) × i design
Score effects
Xsi:c:to = µ

+ (µt – µ)
+ (µi – µ)
+ (µo – µ)
+ (µti – µt – µi + µ)
+ (µto – µt – µo + µ)
+ (µio – µi – µo + µ)
+ (µtio – µti – µto – µio + µt + µi + µo – µ)
+ (µc:to – µto)
+ (µci:to – µc:to – µtio + µto)
+ (µs:c:to – µc:to)
+ (Xsi:c:to – µci:to – µs:c:to + µc:to)

Variance
components

σ2(Xsi:c:to) = σ2(t) + σ2(i) + σ2(o) + σ2(ti) + σ2(to) + σ2(io) + σ2(tio) + σ2(c:to) +
σ2(ci:to) + σ2(s:c:to) + σ2(si:c:to)

Variance estimates

= [MS(t) – MS(ti) – MS(to) + MS(tio) + MS(c:to) – MS(ci:to)
–  MS(s:c:to) + MS(si:c:to]/ninoncns

= [MS(i) – MS(ti) – MS(io) + MS(tio) + MS(ci:to) – MS(si:c:to)]/ntnoncns

= [MS(o) – MS(to) – MS(io) + MS(tio) + MS(c:to) – MS(ci:to) –
MS(s:c:to) + MS(si:c:to)]/nintncns

= [MS(ti) – MS(tio) + MS(ci:to) – MS(si:c:to)]/nintncns

= [MS(to) – MS(tio) – MS(c:to) – MS(ci:to) + MS(s:c:to) –
MS(si:c:to)]/nincns

= [MS(io) – MS(tio) + MS(ci:to) – MS(si:c:to)]/ntncns

= [MS(tio) – MS(ci:to) + MS(si:c:to)/ncns

= [MS(c:to) – MS(ci:to) – MS(s:c:to) + MS(si:c:to)]/nins

= [MS(ci:to) – MS(si:c:to)]/ns

= [MS(s:c:to) – MS(si:c:to)]/ni

=  MS(si:c:to)
(s:t):(c × o) × i design

s:(e× o) × i design
Score effects
Xsi:eo = µ

+ (µe –µ)
+ (µi – µ)
+ (µo –µ)
+ (µei – µe – µi + µ)
+ (µeo – µe– µo + µ)
+ (µio – µi – µo + µ)
+ (µeio – µei – µeo – µio + µe + µi + µo – µ)
+ (µs:eo – µeo)
+ (Xsi:eo – µs:eo – µeio + µeo)

(continued)
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whereµi is themeanorexpectedvalueofan itemover the restof theconditions in the
universe of admissible observations and over the population of teachers. Spe-
cifically, (µi –µ) is the deviation of the mean (over students, courses, occasions, and
teachers) associated with an item from the mean over all items, which is the grand
mean. Similarly, (µt – µ) represents the teacher effect, which is the deviation of the
mean (over all remaining measurement conditions) associated with a teacher from
the mean over all teachers or the grand mean. Another example is the teacher–item
interaction effect, (µti – µt – µi + µ). It is the deviation of the mean (over students
within courses and occasions) associated with a teacher and an item from the grand
mean after removing the teacher effect and item effect. The last score effect in Table
1 is a residual term that represents a multiway interaction confounded by other
sources of variation unaccounted for by the present model.

Squaring and taking the expected value of each score effect yields a variance
component. For example,σ2(i) = Ei(µi – µ)2. Thus, except for the grand mean,
which is a constant, 11 variance components are associated with the score effects.
One analytical assumption used in G theory is that these score effects are inde-
pendent of each other. Thus, the 11 variance components are additive. The sum of
these components adds up to the total observed score variance.

These variance components, listed in Table 1, are associated with a single
teacher in the population and single conditions in the universe of admissible obser-
vations. Estimates of these variance components can be obtained from mean
squares estimates in an analysis of variance (ANOVA). Adopting a balanced
design2 in which the same number of students and same number of courses are
sampled for each teacher, these ANOVA estimates are presented in Table 1.
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TABLE 1 (Continued)

Variance
components

σ2(Xsi:eo) = σ2(e) + σ2(i) + σ2(o) + σ2(ei) + σ2(eo) + σ2(io) + σ2(eio) + σ2(s:eo) +
σ2(si:eo)

Variance estimates
= [MS(e) – MS(ei) – MS(eo) + MS(s:eo) + MS(eio) – MS(si:eo)]/ninons

= [MS(i) – MS(ei) – MS(io) + MS(eio) – MS(si:eo)]/nenons

= [MS(o) – MS(eo) – MS(io) – MS(eio) + MS(s:eo) – MS(si:eo)]/nenins

= [MS(ei) – MS(eio) + MS(si:eo)]/nons

= [MS(eo) – MS(eio) + MS(s:eo) – MS(si:eo)]/nins

= [MS(io) – MS(eio) + MS(si:eo)]/nens

= [MS(eio) – MS(si:eo)]/ns

= [MS(s:eo) – MS(si:eo)]/ni

=  MS(si:eo)

Note. Score effects and variance estimates can be obtained from (s:c):(t × o) × i design by
exchangingc with t. s = students;c = courses;t = teachers;o = occasions;e= event.

2A nested design is considered balanced if an equal number of conditions of a nested facet is nested in
every condition of the nesting facet. For the ease of variance estimation, all the generalizability and

2ˆ ( )eσ
2ˆ ( )iσ
2ˆ ( )oσ
2ˆ ( )eiσ
2ˆ ( )eoσ
2ˆ ( )ioσ
2ˆ ( )eioσ
2ˆ ( : )s eoσ
2ˆ ( : )si eoσ



Courses As Objects of Measurement

A different conceptualization of the data would treat courses as the objects of
measurement. The purpose of such an evaluation would be to assess the strength
and weakness of the course offerings and curriculum. Information from such an
evaluation is useful for allocating a budget (Gordon, Jordan, & Albin, 1994) and
restructuring courses. One would want to assess the quality and popularity of a
course generalizing over the universe of teachers and students who might teach
or take it. In this conceptualization, the data categorizations other than courses
are treated as conditions imposed to make observations of the objects of mea-
surement. For example, for a course to be evaluated, it has to be taught by a
teacher to some students at a particular time point. Thus, the evaluation of the
course is subject to the influence of the effectiveness of the teacher as well as
the reactions of the students at the time of instruction.

To separate the unique effect of courses independent from that of teachers, only
courses thathavebeen taughtbymore thanone teachercanbeevaluated. In thissitu-
ation, teachersarenestedwithincourses.Therestof thedataconditionsmaintain the
same relations among themselves as in the first evaluation conceptualization. The
G-study design for the current conceptualization is (s:t):(c × o) × i. An observed
score,Xsi:t:co, isdecomposed into11scoreeffectsas in theprevious(s:c):(t×o)× i de-
sign.Thedifference is that, in thecurrentdesign, themaineffectofcoursescanbees-
timated, whereas in the (s:c):(t ×o) × i design, the course effect is confounded by the
interaction between courses and teachers. Because the statistical form of this design
is identical to that of the previously discussed (s:c):(t × o) × i design, detailed infor-
mation on score effects and variance estimates is not provided.

Instructional Events As Objects of Measurement

A third conceptualization would have the combination of a teacher and a course as
theobjectofmeasurement.Thiscombinationhasbeenreferred toasan instructional
event (Kane et al., 1976). When instructional events are used as the objects of mea-
surement, the course and teacher effects that are undifferentiated are not of interest.
Of interest is the effectiveness of an instructional event independent of who teaches
whatcourse.Feedback fromsuchanevaluationcanbeused todetermine the instruc-
tionalqualityofadegreeprogramordepartment.Such feedback isuseful foraccred-
itation and institutional accountability (Pratt, 1997; Trow, 1996). Using an instruc-
tional event (e) to represent the teacher–course combination, the G-study design for
this conceptualization iss:(e× o) × i. The universe of admissible observations con-
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sistsof threesetsof conditions, thoseof students, items,andoccasions.Anobserved
score,Xsi:eo, represents a sampled combination of one student, one item, and one oc-
casioncorresponding toan instructionalevent.Xsi:eocanbedecomposed intonine in-
dependent score effects. The associated variance components add up to the total ob-
served score variance. Finally, these variance components can be estimated through
a balanced ANOVA. The score effects, variance components, and ANOVA esti-
mates are presented in Table 1.

G-Study Variance Estimates

With the previously described formulations of measurement conceptualizations,
the next step in a G study is to take random samples from the universe of admissible
observations. The samples are used to estimate the variance components associated
with the G-study designs. With respect to faculty evaluation as well as other multi-
faceted studies where a large data set preexists, random samples from the existing
data set can be taken to make the variance estimates.

In this study, samples were taken from the 1995–1996 faculty evaluation at a
university in the western United States. For the first conceptualization, (s:c):(t × o)
× i, where teachers were the objects of measurements, a random sample of 30
teachers (nt = 30) was drawn. For each teacher, two different courses (nc = 2) were
sampled for each of two consecutive semesters (no = 2). The two courses were dif-
ferent across the two semesters. To achieve a balanced design, a random sample of
10 students (ns = 10) from each course was used. Courses that had fewer than 10
students were not included in the sampling frame. A standard evaluation form con-
taining 12 items had been used to obtain all the evaluation data. All 12 items were
included in the G study (ni = 12). The items had a 5-point scale describing instruc-
tional performance ranging from 1 (very poor) to 5 (very good).

For the second design, (s:t):(c × o) × i, where courses were the objects of mea-
surement, 30 courses (nc = 30) were sampled. Each course was repeated over two
semesters (no = 2). In each semester, two different teachers taught the course (nt =
2). A random sample of 10 students (ns = 10) was used for each course. The same
12 items (ni = 12) were used.

For the third conceptualization,s:(e× o) × i, 30 instructional events were sam-
pled (ne = 30). An instructional event was a combination of a teacher teaching a
course. Each instructional event took place for two consecutive semesters (no = 2).
The sampling of the rest of the facets was the same as before. The three samples as-
sociated with the three G-study designs were independent.

Variance estimates for all three designs are reported in Table 2. Negative vari-
ance estimates were set to zero3. In all three designs, the objects of measurement
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generalizability theory, negative estimates are set to zero by one of two approaches (Brennan, 1983;



had a satisfactory amount of variance. This means that the faculty evaluation as
conceptualized in this study can differentiate among teachers, courses, or in-
structional events. It also appears that the components involving facets that
were crossed with the objects of measurement were all small. Specifically, in all
three designs, the main effects of items and occasions and their interactions with
the objects of measurement were small, except for the component in the
third design, which was slightly large. The finding regarding the item facet is
also consistent with those of three previous studies by Kane et al. (1976),
Gillmore et al. (1978), and Smith (1979), respectively, which did not include the
occasion facet in the designs.

In all three designs, however, the nested facets had substantial variance
components. In the first design, for example, as the largwest variance compo-
nent, was .384, indicating that students’ ratings fluctuated greatly
over courses and occasions. This nested component, however, contained sev-
eral confounded effects that, undser the current design, could not be differen-
tiated. Specifically, was confounded by the main effect of
students, a two-way interaction between students and courses, and a four-way
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TABLE 2
Random Effects Generalizability Study Estimates of Variance Components

(s:c):(t × o) × i (s:t):(c × o) × i s:(e × o) × i

Source Source Source

t .0719 c .1464 e .1122
c:to .0519 t:co .1196 s:e .4702
i .0079 i .0089 i .0108
o .0014 o .0013 o .0023
s:c:to .3840 s:t:co .4442 ei .0155
ti .0215 ci .0144 eo .0530
to –.0088 co –.0350 io .0003
io .0004 io .0001 eio .0147
tio –.0013 cio .0080 si:eo .2883
ci:to .0104 ti:co .0254
si:c:to .2736 si:t:co .2861

Note. Negative values were set to zero.s= students;c = courses;t = teachers;o = occasions;i =
items;e= events.

2σ̂ 2σ̂ 2σ̂

Cronbach, Gleser, Nanda, & Rajaratnam, 1972). One approach, which was adopted in this study, is
to simply set the negative variance estimate concerned to zero without letting the zero value affect
the estimation of other variance components. This approach works when variance estimates are di-
rectly derived from the mean squares and sample sizes, as was done in this study. In the other ap-
proach, variance estimation is carried out in a hierarchical order where one variance component is
derived from estimates of preceding variance components. In this approach, setting one negative es-
timate to zero is likely to bias other variance estimates.

2ˆ ( )eoσ

2ˆ ( : : )s c toσ

2ˆ ( : : )s c toσ



interaction involving all four components. Among these components, only the
last one had a direct bearing on the normative evaluation or rankings of teachers.
However, with the existing faculty evaluation data, which were reconceptualized
in the form of the (s:c):(t × o) × i design, these components could not be dis-
tinctly estimated. To estimate these components, data have to be collected ac-
cording to designs in which the objects of measurement are fully crossed with
all the measurement conditions. Such is the limitation for analyzing existing data
sets. On the other hand, most of the previously mentioned data constraints repre-
sent inherent characteristics of a faculty evaluation. For example, one cannot ex-
pect to have the same students repeat the same courses by the same teachers
over time.

In the second design, the objects of measurement, namely, courses, had a
larger variance component than in the first design. In Gillmore et al.’s (1978)
study, this variance component was close to zero, giving rise to the impression
that judgments about courses were undifferentiating (Smith, 1979). However, in
replicating Gillmore et al.’s study using a different set of items, Smith obtained
a satisfactory variance estimate for courses. Our finding further supports the use
of courses as the objects of measurement in faculty evaluation. In this design,
the four-way nested term represented, again, the largest
variance component. Apart from the imbedded confounding effects, the magni-
tude of this component implied rating fluctuations on the part of the students. To
a lesser degree, the teacher condition seemed also to introduce
inconsistencies in making the evaluation of courses. That is, the evaluation of a
course changed depending on who taught it. This interpretation, however, is
confounded by the main effect of teachers, which does not bear on the normative
evaluation or rankings of courses.

In the third design where instructional events were the objects of measurement,
the occasion condition created a larger interaction with the objects of measurement
than in the twopreviouslydiscusseddesigns.Excluding thenestedcomponents that,
as in the other two designs, were among the larger components, the interaction be-
tweenoccasionandtheobjectsofmeasurement was thesecond larg-
estcomponentnext to theobjectsofmeasurement. In theother twodesigns, thesame
interaction component was much smaller. This finding indicates that, when a judg-
ment is made about instructional events independent of who teaches which course,
taking evaluations across multiple occasions becomes more important than when
teachers or courses are the objects for judgment. In this design, students also repre-
sentedaslightly largervariancecomponent than in theother two
designs.

These variance estimates provide useful information for designing efficient
faculty evaluation procedures. For example, how many courses should be exam-
ined so that a decision regarding faculty promotion achieves a desired level of
reliability? This and other D-study considerations are discussed next.
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D-STUDY CONSIDERATIONS

A G study is concerned with the conceptualization of a measurement and the es-
timation of variance components associated with single conditions in the uni-
verse of admissible observations. A D study is concerned with efficient
applications of the G-study measurement conceptualization and an evaluation of
the dependability of these measurement applications. The dependability of a
measurement procedure is evaluated in relation to the universe of generalization.
A universe of generalization contains all or subsets of the conditions in the uni-
verse of admissible observations to which replications of the measurement pro-
cedure are to be generalized. In other words, the universe of generalization sets
the scope within which dependability of the measurement procedure is evalu-
ated. For example, an institution that uses only one set of items (i.e., a standard
evaluation form) in conducting faculty evaluation would not be concerned with
the consistency of the evaluation in terms of other items or evaluation forms.
However, it may be concerned with the dependability of the evaluation when it
is used to assess future courses that the faculty members might be teaching. The
universe of generalization in this example contains the course facet but not the
item facet of the universe of admissible observations.

When one uses faculty evaluations to make decisions (e.g., who will receive a
promotion, which course should cease to be offered, or what instructional program
is most effective), total scores or mean scores based on multiple measurement con-
ditions will provide more dependable results than single scores. Thus, a universe
of generalization is normally associated with mean scores over multiple conditions
sampled from the universe of admissible observations. Based on G-study variance
estimates, which are associated with single conditions, one decides, in a D study,
on an efficient number of conditions to be sampled to achieve a prescribed level of
dependability. The purpose of this D study is to determine how many measure-
ment conditions from the existing faculty evaluation data should be used in mak-
ing different evaluation decisions. In the following, within each of the three
conceptualizations of faculty evaluations, three D-study considerations are pro-
vided that make efficient use of the existing data for various decision-making pur-
poses. These D-study considerations are based on the respective G-study data
reported earlier, rather than on new data. Thus, they are calledD-study consider-
ationsinstead of D studies (Brennan, 1983).

Teacher-Related Considerations

The three D-study considerations discussed in this section are associated with
the first G-study design, (s:c):(t × o) × i, where teachers were the objects of mea-
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surement. In one decision consideration, it is reasonable to define the universe of
generalization as being identical to the universe of admissible observations. That
is, the decision maker is interested in generalizing to all the facets when consid-
ering the dependability of a faculty evaluation. It is also assumed that the deci-
sion maker is interested in the mean scores of teachers over multiple conditions
from each facet. The D-study design will be (S:C):(t × O) × I, where a capital
letter indicates the mean over multiple conditions of a facet. The observed mean
score of a teacher is (or,XSI:C:tO). This mean score is the result of one instance
of the evaluation procedure that samples a combination of students, items,

courses, and occasions from the universe of admissible observations. An-
other instance of the same evaluation procedure will result in sampling another
combination of , , ,and conditions from the same universe of admissi-
ble observations. The set of all combinations of , , ,and conditions
constitutes the universe of generalization. In making dependability forecasts, a
D-study sample size, , does not have to be the same as, and is usually differ-
ent, from a G-study sample size,na.

In this D-study consideration, a teacher’s universe score is the expected value
over the defined universe of generalization. It is defined as (orµt

≡ EIEOECESXSI:C:tO). Universe score variance isσ2(t) = Et(µt –Etµt)2. The expected
observed score variance (the variance of teachers’ observed mean scores) is:

Variance components due to items (σ2(I)), occasions (σ2(O)), and the interac-
tion between the two (σ2(IO)) are not included in the expected observed score vari-
ance of teachers because these effects are constant to all teachers. For example, if
difficult items are sampled, they affect the evaluation of all teachers. These com-
ponents are distinguished from the interaction components involving teachers,
σ2(tI) andσ2(tIO), which are included in the expected observed score variance be-
cause they affect the relative standings of teachers.

TheGcoefficient isdefinedas the ratioofuniversescorevariance to theexpected
observed score variance, Capital letters in the paren-
theses indicate the facets towhich theestimatedGcoefficient is intended togeneral-
ize. Specifically,Eρ2(CSIO) indicates the degree to which, under the current
D-study consideration, an observed score, , can be replicated from similar mean
scores of other randomly sampled courses, students, items, and occa-
sions. The sample size is part of the D-study consideration. Figure 1, which will be
discussed at the end of the D-study section, plots the changes in G-coefficient esti-
mates as a function of different sample size considerations.
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Eρ2(CSIO) is approximately the expected value of the squared correlation of
two evaluations based on random samples of students within courses
and occasions using items. One can also viewEρ2(CSIO) as analogous to a
reliability coefficient in classical test theory. The expected observed score vari-
ance consists of two parts, the universe score variance,σ2(t), and variance due to
different conditions on which the measurement is taken. In G theory, these latter
variance components constituteσ2(δ), which is called error variance for a
norm-referenced interpretation (Brennan, 1983). In this light, the G coefficient
can be interpreted in a similar fashion to a reliability coefficient in classical test
theory except that the error variance here contains multiple sources representing
different conditions on which the measurement is taken. Taking the square root
of σ2(δ) yields what is conceptually equivalent to the standard error of measure-
ment in classical test theory.

WhereasEρ2(CSIO) generalizes to all the facets in the universe of admissible
observations, another D-study consideration could have the item facet fixed.
Fixing a facet means that the same sampled conditions from the facet will be re-
tained in future replications of the measurement procedure. Fixing the item facet is
reasonable because most institutions use one set of items or a standard form of
evaluation throughout the years. With items fixed, the universe of generalization is
smaller in that it does not have the item facet to which to generalize replications of
the evaluation procedure. The intention is not to generalize to other items but to
use, in future evaluations, the same items that are included in the D study.

When items are fixed, the universe score is the expected value of the observed
mean score over one fixed set of items and all possible samples of stu-
dents, courses, and occasions. The universe score variance isσ2(t) + σ2(tI).
Because the expected value is not taken over all possible items in the universe of
admissible observations, the systematic effect due to the particular set of items will
become part of the measurement in future replications. Thus,σ2(tI) becomes part
of the systematic universe score variance. The expected observed score variance
remains unchanged. The G coefficient for generalizing over students, courses, oc-
casions, but not items is Eρ2(CSO) is ap-
proximately the expected value of the squared correlation of two evaluations based
on the same items and random samples of students, courses, and occa-
sions. This G coefficient would be larger than the previously discussed G coeffi-
cient, Eρ2(CSIO), because the universe of generalization is smaller. The
measurement procedure has higher generalizability with restricted generalization.
Figure 1 illustrates the changes in G-coefficient estimates as a function of sample
size changes.

A third D-study consideration could have both items and courses fixed. Fixing
courses is reasonable because many faculty members repeatedly teach a few
courses that may be included in a D study. Fixing courses means future evaluation
of a faculty will be based on the same courses that are used in the D study. Thus,
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variance resulting from the teacher–course interaction (i.e., variability due to a
teacher performing differently on assigned courses) becomes part of the universe
score variance. However, with the current design, where courses were nested in
both teachers and occasions, the teacher–course interaction and the three-way
teacher–course–occasion interaction are inseparable. They are imbedded in the
σ2(C:tO) component. By fixing courses, the whole component ofσ2(C:tO) has to
become part of the universe score variance. In this approach, the effect of occasion
on course is ignored. In other words, the part of the teacher–course fluctuation that
is also a result of teaching the courses at different times is ignored. Consequently,
the estimate of the G coefficient is biased upward. Because items are also fixed, the
same explanation applies to the treatment ofσ2(CI:tO) as part of the universe score
variance. (The approach, however, is different than fixing the occasion facet. If the
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FIGURE 1 Generalizability- (G-) coefficient estimates under different sample size

considerations. In Plot A, teacher = object of measurement; occasion = 2; item = 12 for solid
line, 24 for dotted line; course = 1, 2, 4, for square, triangle, and circle. In Plot B, course = object of
measurement; occasion = 2; item = 12 for solid line, 24 for dotted line; teacher = 1, 2, 4 for square,
triangle, and circle. In Plot C, teacher = object of measurement; occasion = 2; item = fixed; course =
1, 2, 4, for square, triangle, and circle. In Plot D, course = object of measurement; item = fixed; oc-
casion = 2; teacher = 1, 2, 4 for square, triangle, and circle. In Plot E, teacher = object of measure-
ment; item = fixed; course = fixed; occasion = 1, 2, 4 for square, triangle, and circle. In Plot F,
course = object of measurement; item = fixed; teacher = fixed; occasion = 1, 2, 4 for square, trian-
gle, and circle. In Plot G, instructional event = object of measurement; item = 12 for solid line, 24
for dotted line; occasion = 1, 2, 4 for square, triangle, and circle. In Plot H, instructional event = ob-
ject of measurement; item = fixed; occasion = 1, 2, 4 for square, triangle, and circle.



occasion facet also were fixed, two more components,σ2(tIO) andσ2(CI:tO),
would be included in the universe score variance.) With items and courses
both fixed, the universe score variance isσ2(t) + σ2(tI ) + σ2(C:tO) +
σ2(CI:tO). The expected observed score variance is unchanged. The G co-
efficient for generalizing over students and occasions but not items or
courses is G-coeffi-
cient estimates associated with different sample size considerations are reported in
Figure 1.

Course and Program Related Considerations

Similar D-study considerations are made for the other two G-study designs. One of
the G-study designs, (s:t):(c × o) × i, treats courses as the objects of measurement.
The expected observed score variance of courses is:

The G coefficient for generalizing over all measurement conditions is:

The G coefficient for generalizing over teachers, students, and occasions but
not items is:

The G coefficient for generalizing over students and occasions but not over
items or teachers is:

In the other design,s:(e× o) × i, instructional events are the objects of measure-
ment. The expected observed score variance is:
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The G coefficient generalizing over all conditions is:

The G coefficient generalizing over students and occasions but not items is:

The G coefficient for generalizing over students only but not over items or oc-
casions is:

Estimates of the previously discussed G coefficients can be directly derived
from the estimates of the universe score variance and different D-study variance
components. The latter are obtained in the same manner as are the G-study vari-
ance components described in Table 1. According to the central limit theorem, the
variance of mean scores is that of individual scores divided by the sample size. If
the D study is based on the same data set as the G study, as is the case with this
study, D-study variance estimates can be directly obtained by dividing the corre-
sponding G-study estimates by the number of conditions sampled in the D study.
Estimates of different G coefficients associated with different sample size consid-
erations are plotted in Figure 1.

Sample Size Recommendations

One of the common D-study considerations is to determine, for each set of measure-
ment conditions, an efficient sample size that maximizes the dependability of the
measurementprocedurewhileminimizingcosts.Figure1plots thechanges inG-co-
efficientestimatesasafunctionof thedifferentsamplesizechanges.The increments
in sample size associated with different sets of measurement conditions in Figure 1
are proportional to their original G-study sample sizes. For example, an increase of
two courses (which represented a 100% increase over its original G-study sample
size of two) was compared to an increment of 12 item conditions (which is also a
100% increase over its G-study sample size of 12). Thus, one can draw comparisons
of the relative impact of sample size increments on the G coefficients across the dif-
ferent sets of measurement conditions.

In all three designs using teachers, courses, and instructional events as the ob-
jects of measurement, increasing evaluation items had little impact on G estimates.

270 CHANG AND HOCEVAR

2 2 2 2( ) [ ( ) ( )]/ ( ).eE SO e eI E Xρ = σ + σ σ

2 2 2 2 2 2( ) [ ( ) ( ) ( ) ( )]/ ( ).eE S e eI eO eIO E Xρ = σ + σ + σ + σ σ

2 2 2( ) ( ) / ( ).eE SIO e E Xρ = σ σ



As shown in Plots A, B, and G of Figure 1, the dotted line that represents 24 items
overlaps the solid line that represents 12 items. Thus, other conditions being equal,
using 12 items achieved almost the same level of dependability as using 24 items.
Similarly, fixing items did not attain as much of a dependability increment as this
approach was intended to achieve. This conclusion is drawn from the small differ-
ence between Plots A and B, where items were random, and Plots C and D, where
items were fixed. This is especially true for the first two designs. For example, cal-
culated from the G-coefficient estimates that were used to plot Figure 1, estimates
of the two G coefficients associated with sampling 4 teachers, 20 students, 12
items, and 4 occasions were for random items and

with the 12 items fixed. Gillmore et al. (1978) reported equally
similar G coefficients for generalizing versus not generalizing over the item facet.
An implication of the finding is that universities that use different evaluation
items, either across time or across academic disciplines, may still draw dependable
comparisons of the rankings of teachers or courses.

As shown in almost all of the plots in Figure 1, an efficient number of stu-
dents to be sampled in conducting evaluations seemed to be between 10 and 20.
Above 20 students, the increment on measurement dependability became de-
creasingly small. Similar findings were reported by Gillmore et al. (1978) and
Kane et al. (1976). More important, however, the measurement dependability of
the evaluation decelerated fast when the number of student conditions went be-
low 10.

When teachers were the objects of measurement, increasing courses seemed
to have the highest impact on generalizability estimates. As shown in Figure 1,
an efficient number of courses seemed to be between two and four. Although
adding courses increased dependability, using more than four courses was
clearly not cost effective. This finding is different than that of Gillmore et al.
(1978) who recommended sampling 5 to 10 courses. As shown in Figure 1, with
a sufficient number of students, the evaluation based on a single course had an
acceptable generalizability of .60 or higher. When courses were the objects of
evaluation, the sample size of teachers teaching the same courses had slightly
more impact on the G-coefficient estimate than the sampling of courses when
teachers were the objects of measurement. An efficient sample size also seemed
to lie between two and four. When courses (or teachers) and items were both
fixed, that is, the same items and courses (or teachers) were used to evaluate a
teacher (or a course), collecting such evaluation data once, twice, or four times
seemed to make little difference on the dependability of the results. This can be
seen from Plots E and F of Figure 1. In other words, for example, if one is only
interested in how well a teacher teaches the same course, the results based on
one evaluation or the average of two or four such evaluations were almost
equally highly dependable, given that the same items and a sufficient number of
students were used. However, the occasion condition made a much larger impact
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when instructional events were the objects of evaluation. This finding is not sur-
prising because the ratings of instructional events were confounded by both the
teacher and course effect and, thus, should be less consistent across semesters.

DISCUSSION

In this study, we demonstrate the use of G theory in analyzing an existing set of fac-
ulty evaluation data. When faculty evaluation is initially conducted, there is usually
not a G-theory conception of what constitutes the universe of admissible observa-
tions. When a substantive decision is to be made or has been made, one may want to
know the dependability of that decision. As shown in this article, one can
reconceptualize the existing evaluation data within the framework of G theory.
Random samples can then be taken from existing data to estimate the variance com-
ponents associated with the conceptualization. These variance estimates enable
one to choose an efficient D-study design from which substantive decisions can be
made with a known level of dependability.

For example, to achieve the same level of dependability, one may sample fewer
courses when making decisions regarding a faculty member teaching the same
courses than teaching different courses. Because a university is usually concerned
with how well a faculty member teaches the same set of courses she or he normally
teaches, the university may not need to conduct teaching evaluations for every
course the faculty member teaches in a semester. Instead, a random sample of
courses can be selected from a faculty member for evaluation. The sample size can
be as low as one course because, as shown in the study, teaching evaluations based
on a single course had an acceptable reliability of .60 or higher. Sometimes, a pro-
fessor is recognized for excellence in teaching from the teaching of a single course.
In light of these findings, such a teaching reputation can be perceived as sustain-
able and generalizable, given that enough items are used by a sufficient number of
students in providing the evaluation of the course. When generalizing over all pos-
sible courses, an average rating of a faculty member based on two to four courses
seems to be desirable. An evaluation based on more than four courses is clearly not
cost effective.

The same is true for making decisions regarding a course as the object of judg-
ment. First, it is sufficient to look at the average rating of a course based on two to
four different teachers, if any teacher is expected to teach the course. When teach-
ers are fixed, the judgment about the course being taught by the same teachers is,
not surprisingly, more dependable. When items were fixed, the average depend-
ability of a decision regarding a course to be taught by any teacher was .827. The
average dependability of a judgment of the course to be taught by the same teach-
ers who were sampled in a D study was .964. Thus, when decisions are made about
courses, for example, in curriculum evaluation, course restructuring, and alloca-
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tion of resources (Gordon et al., 1994), one does not need to sample many different
teachers teaching a course, especially when the same teachers are expected to con-
tinue to teach the course.

The impact of the number of students on teaching evaluation is an interesting
one. One inflection point of the dependability curve, as shown in Figure 1, seemed
to be around 10 students, below which the deterioration of reliability accelerated
quickly. This finding is important because it is common to hear one or two students
comment on a faculty member’s teaching. Such comments, which tend to be
clearly positive or negative, are sometimes taken seriously by an academic depart-
ment or even higher levels of the university administration. As shown in Figure 1,
the evaluation by one or two students was highly unreliable. Such an evaluation
could be replicated as little as 20% of the time, even when an adequate number of
items was used. Another implication of the same finding is that measurement de-
pendability could be questionable for the evaluation of an extremely small class
with, for example, five to six students.

An acceptable number of students seems to be between 10 and 20. Above the
sample size of 20, however, the number of students seems to have little impact on
the consistency of an evaluation, when either the teachers, courses, or, to a lesser
degree, instructional events are the objects of judgment. For example, the average
of the G-coefficient estimates based on a 10-student teacher evaluation

was almost identical to that of a 20-student evaluation
, averaging over other conditions. However, this finding does

not imply that class size has no bearing on faculty evaluation. That is, independent
of the consistency of the evaluation, which up to a certain point does not seem to be
influenced by the number of students in a class, it is not known, for example,
whether small classes tend to provide systematically more positive evaluations
than large classes. Future studies can explore this question by including class size
as an additional measurement condition. The findings discussed here are based on
the assumption that all the measurement conditions were randomly sampled from
the universe of admissible observations. If, for example, certain students choose
not to evaluate a teacher for some reason, the reduced sample size of the student
conditions would, of course, have different implications.

Instructional events as the objects for decision making have been rarely used in
the literature. However, with the current focus on institutional accountability
(Trow, 1996), it becomes increasingly important to evaluate instructional events
independent of who teaches what course. Accreditation, for example, calls for an
evaluation of course offerings without too much concern over what courses are
taught by which teachers. Similar evaluations are relevant for fund-raising, bud-
geting, and public relations purposes (Gordon et al., 1994). A teacher and a course
that form an instructional event, individually, no longer represent measurement
conditions. As shown in the D-study results, the potential concern for judgment
dependability seems to lie in the number of semesters for which a decision should
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be based. Such a decision, as shown in Figure 1, should be based on the average
rating of at least two semesters of instruction.

Because most universities have extensive faculty evaluation data, one can make
improvements over this study by taking multiple samples from an existing data set.
An average of multiple estimates of the same G-study variance components can be
used in subsequent decision considerations. The mean estimate will have higher
precision and stability than a single estimate. In addition, one can obtain an esti-
mate of the standard error of the mean variance estimates. This approach has been
demonstrated by Brennan, Gao, and Colton (1995).

The three G-study conceptualizations considered here are representative of the
common data structure and use of faculty evaluation. Variance estimates from this
G study can be used by decision makers to evaluate the dependability of different
D-study decisions without conducting another G study. As long as the measure-
ment conceptualization is the same, variance estimates from one G study can be
used for multiple D studies carried out by different people. However, conceptual-
izations different from what are presented in this study may also be formulated to
account for an existing evaluation. For example, in this study, all facets were con-
sidered infinite, whereas it is also reasonable to conceptualize the course facet as
finite because most universities list a fixed number of courses to be offered. With
finite courses, the designs and their interpretations will remain the same as those
presented in this study except that the concept of taking expected values over a ran-
dom facet will be replaced by averaging over theN levels of the finite facet. Vari-
ance estimation can also remain the same as that presented in Table 1, plus the
application of the finite universe correction factor (Cochran, 1977) to the compo-
nents involving the finite facet as a nesting factor. The correction is the reciprocal
of 1 –n / N, wheren is the sampled number of conditions from the finite facet and
N is the finite number of conditions of the facet in the universe.
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